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1. INTRODUCTION

We shall consider the continuous functions on a closed interval I. The
Banach space C(I) with the supremum norm Ilxll = SUPtEllx(t)1 will be
denoted by x. We suppose that Y is an n-dimensional Haar subspace of x
containing constant functions, L is a projection of X onto Y if L E B[X, Yj,
and L is idempotent. Given a class F of projections of x onto Y, L * is
termed minimal in F if infLEF IlL II = IlL*II, where IlL II = sUPIIxIl= I IILxll. If
the class F contains all projections of x onto Y, then there exists such a
minimal projection, but it has no known characterizations.

The only nontrivial class in which the minimal projection may be charac­
terized is the class of interpolating projections. These projections may be
written in the form

n

L= L lioPi'
i=1

(1)

where the Ii are point evaluation functionals corresponding to the n distinct
interpolation points in I, and the Pi are the familiar Lagrange interpolation
polynomials satisfying Pi(tj ) = oij' where oij is the Kronecker delta. The
minimal projection in this class is characterized by referring to the function
gL(t) = II I 0 Lllx' = sUPIIxIl= I I(Lx)(t)l. If the endpoints of I are included in the
set of interpolation points, then the minimal interpolating project is such that
II I 0 L IIx' has n - 1 equal extrema; see [4] for details.

In this paper we shall explore some of the structure of the set
AIe={L:LEB[X,Y], Ly=yVyEY, IILII~k}. In particular we shall
identify exactly which of the interpolating projections in A Ie are extremal
points of this set. Of course, Ale might be the empty set, since ilL II is bounded
below by the norm of the minimal projection L *. Even if A k is nonempty, it
may not contain any interpolating projections since the minimal projection is
not in general an interpolating projection.
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The existence of extremal points for the set A k is not immediately obvious,
but can be deduced either by arguments similar to those contained in [1] or
by the following reasoning: any bounded projection LEAk can be
represented in the form

n

L = Ih@Pi'
1=0

where the fo' fl, ... ,fn are independent bounded linear functionals on x, and
PO'PI'... ,Pn are members of Y determined by h(PJ) = b/j' where b/J is the
usual Kronecker delta. If we normalize the PI to have unit norm and denote
the Cartesian product of X* with itself n + 1 times by (X*)" + 1, then to each
projection LEA k there corresponds a unique f E (X*)" + I, where
f = (lo,fI' ... ,fn)' We shall need some results about the w*-compactness of
certain of these sets. It should be noted that the following result does not
depend on the spaces X and Y being identified with C(I) and an n­
dimensional subspace of C(I). Any Banach space X and finite-dimensional
subspace Y will suffice.

LEMMA 1. Let C be the set of all fE (x*)"+ I such that h(PJ) = bij and
L = 'L..7=oh@P/ is a member of A k • Then C is a w*-compact subset of
(x')n+l.

Proof For 1 ~ i, j ~ n, define the maps u/.J: (x*)" + 1 --. IR by ul.J(f) =
h(P). Then it is immediate from the definitions that u/,J is continuous when
the w*-topology is imposed on (X*)" + I and the usual topology on IR. Now
consider also the maps Vx,t: (x*)n+1 --.IR given by

Again these are continuous mappings from (X*)" + I into IR. Now setting

D = n {f: uljf) = b/j}'
I,J

E = n {f: vxif) ~ k},
tel

I~II<I

then D and E are w*-closed, and since C is the intersection of D and E, C is
also w*-closed. It is clearly bounded, and so is w*-compact.

COROLLARY. The set A k is the closed convex hull of its extreme points.

We shall now stipulate that Y is the subspace of polynomials of degree
n - 1, where n~ 3. This has the consequence (see [3]) that all projections
from X to Y have norm strictly greater than unity. We shall denote the
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closed unit sphere in X by SeX) and the set {x: x E X, Lx = 0, L E B[X, Y]}
by Ker(L).

2. THE FUNCTIONS gL

The function gL is often referred to as the Lebesgue function of the
projection L. If L is an interpolating projection, then gL has several special
properties. Henceforward we assume Y is the subspace of polynomials of
degree at most n - 1 when the following may be found in [6].

Property 2-1. We have that
n

gL(t) = Ilf 0 LIIX' = 2.: Ipl(t)I·
/=1

Property 2-2. The function gL is a piecewise polynomial of degree n - 1
with knots at tl' t2 , ... , tn' the t l being the interpolation points of L.

Property 2-3. Let I = [a, b] and the interpolation points be ordered so
that t l < t2 < ... < tn' Then gL is strictly increasing and convex in [tn' b] and
strictly decreasing and convex in [a, tl]'

Property 2-4. The function gL (t) has exactly one maximum value in
each of the intervals Itt, t l + I] for 1~ i ~ n - 1, and at these points g£(t) < O.

In fact, Property 2-4 differs slightly from [6, Property A-51, but Property
2-4 is established in the course of the proof of Property A-5.

LEMMA 2. Let LEA k be an interpolating projection with II soL Ilx' = k
for some s E 1. Suppose H, K E A k and L = OH + (1 - 0) K for 0 < 0 < l.
Then if x E Ker(L) we have (Hx)(s) = (Kx)(s) = O. Furthermore, if s is an
interior point of I, we have that the derivates (Hx)' (s) and (Kx)' (s) are also
zero.

Proof. The kernel of L consists of functions x E X such that x(t l ) = 0,
1~ i ~ n, where the t l are the interpolation points of L. Now define

Z = {z EX: Ilzll = 1 and z(tt> = sgnPI(s), 1~ i ~ n},

where (Lx)(t)=L:7=IX(tI)PI(t). It is clear that (Lz)(s)=k for all zEZ.
Furthermore, since H, K E A k and IlL 11= k, we must have IIHII = IIKII = k,
and similarly (Hz)(s) = (Kz)(s) = k for all z E Z. Now if s is an interior
point of L, then the derivatives (Hz)' (s) and (Kz)' (s) must be zero.

Now pick x E ker(L) such that Ilxll ~ 1. Then since II i 0 L IIx' is
continuous and greater than unity for t E (tl' t l+ I) and 0 ~ i ~ n + 1, where
to, tn + I are the end points of the interval I, we can construct disjoint
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neighbourhoods N I of the tl' I ~ i ~ n, such that Ix(t)1 < lJ < I for all t E N I •

Now take M I as neighbourhoods of the t i such that MI c:; N I • Then choose
z E CCl) satisfying z(t) = 0 for t f!:. U7=1 N I , z(t) = {l-lx(t)11 sgn pieS) for
t E M I and Ilzll ~ 1- lJ. Then clearly z E Z and we claim x + z E Z. Clearly,
we need only establish II x + z II ~ 1.

For t E N I we have

Ix(t) + z(t)1 = l{l- Ix(t)11 sgnpl(s) +x(t)1

~I-lJ+lJ=1.

For t f!:. UNI we have

Ix(t) + z(t)1 = Ix(t)1 ~ 1.

It now follows immediately that (Hx)(s) = (Kx)(s) = 0 and (Hx)' (s) =
(Kx)' (s) = 0 if s is an interior point of I.

4. PROOF OF THE MAIN THEOREM

We shall in this section assume that k is sufficiently large for A k to
contain interpolating projections. To simplify the statement of the theorem,
we shall introduce the notion of a k-maximum. The function x E X will be
said to have a k-maximum at t = s if x has a local maximum there, and
xes) = k.

THEOREM. Let LEA k be an interpolating projection with interpolation
points tl' t z,'''' tn' Then L is an extremal point of A k if and only if the
following conditions hold:

(i) If dim Y is odd, either II f 0 L Ilx. has at least Hn + I) k-maxima in
(tl'tn) or at least Hn-I) k-maxima in (tl'tn) and IIf o Lllx.=k at one of
the endpoints of I;

(ii) Ifdim Y is even, either II f 0 L IIx. has at least !!en + I)] k-maxima
in (tl'tn) or at least [!en-I)] k-maxima in (tl'tn) and IIf o Lllx.=k at
both the endpoints of I.

Proof. We begin by establishing the sufficiency part of the theorem. The
proof rests on the fact that if Yl' Yz E Yare equal and have their derivatives
equal at enough points, then Yt ==Yz. We shall use this property to show that
if L = OH + (1 - 0) K, then ker(L) c Ker Hand ker(L) c ker(K); since L,
H, K are projections onto the same subspace L == H == K. We give as an
example the proof for dim Y even, and II f 0 L IIx' having at least [(n - 1)/2 J
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k-maxima in (t" tn) and II t 0 L Ilx- = k at each of the endpoints of I; all the
other cases follow similarly.

Suppose L can be written as L = OH + (I - 0) K, where H, K E A k and°<0 < 1. Let x E ker(L). There are at least [!(n - 1)] + 2 points at which
lito L II = k and by Lemma 2 Hx and Kx are zero at these points. Also at
[!(n - 1)] of these the derivative of lito L II exists and is zero by Property
2-4. An application of Lemma 2 shows that (Hx)' and (Kx)' vanish at these
points. These [!(n - 1)] + [Hn - 1)] + 2 = n conditions are sufficient for
Hx '= Kx '= 0, which, in turn, implies ker(L) c ker(H) and ker(L) c ker(K),
completing the proof of sufficiency.

We shall now establish the necessity in the case dim Y is odd, since the
corresponding proof for dim Yeven is very similar. Suppose first that lito L II
has at most !(n - 1) k-maxima in (t l' tn)' and II t 0 L II <k at each endpoint
of 1. Now construct Yo E Y such that Yo has zeros and does not change sign
at each of the points at which lito L II has k-maxima. Take a functional
~ E X* with the property ~ IY,= 0, and define an operator REB [X, Y] by
Rx=~(x)yo' Then RIY,=O and Rx has zeros and does not change sign at
each of the k-maxima of II t 0 L IIX', for any x E X. Now for any 0 E IR,
L + OR is a projection from X onto Y. Let the k-maxima of L occur at
S1'S2""'S" where r~!(n-l). Surround these points by open intervals
N1'N2 ,...,N, such that IltoLIIX'>a> 1 for all tEN;, l~i~r. By
Property 2-4 these intervals will be disjoint. Also by this property, lito L IIx­
has nonzero second derivative in each of the N; and so there exists 15 1 >°
such that

II t 0 (L + OR )11 ~ k
,

for all t E U N; and 101 < 15 1 ,

;=1

Furthermore f\U~= 1 N; is closed and II t 0 L Ilx- is a continuous function of t
on this set, and so IItoLII~M<k for tEf\U~=IN;. Consequently, there
exists a 152 >°such that

M +10\ II toR II ~ k

for

,
tEf\U N;

;=1
and

Now for 101 < min{t51 , t5 2 } we have II t 0 (L + OR)II ~ k for all tEl. Let 00 be
such a value; then H = L + OoR and K = L - OoR are both in A k and we can
write L =!H + !K, which shows that L is not an extremal point of A k •

The only case remaining for which the dimension of Y is odd occurs when
lito L IIx- has at most Hn - 3) k-maxima and II t 0 L IIx- = k at one or both of
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the endpoints. In this case we construct the Yo in the operator R such that Yo
has zeros and does not change sign at each of the k-maxima of lifo L IIX'.
We also require that Yo has a zero at the end-points if II f 0 L II = k at these
points. A similar argument to the one above, but invoking Properties 2-3
and 2-4, yields the existence of H, K such that L =!H +!K. As was
remarked earlier, the proof when Y is of even dimension goes through in an
analogous manner.

5. REMARKS

Despite the fact that we have given here necessary and sufficient
conditions for interpolating projections to be extremal points, these clearly
cannot constitute all the extremal points of Ax, since for sufficiently small k,
A k is known not to contain any interpolating projections. In view of this, it
would be interesting to know what the other extremal points look like. For
example, a necessary condition for a projection to be an extremal point of A K

would provide us with some information about the minimal projection. The
work of Cheney et al. [2] involves arguments of this nature.

ACKNOWLEDGMENT

The author would like to thank the referee for his comments on an earlier version of this
manuscript.

REFERENCES

I. J. BLATTER AND E. W. CHENEY, On the existence of extremal projections, J. Approx.
Theory 6 (1972), 72-79.

2. E. W. CHENEY, C. R. HOBBY, P. D. MORRIS, F. SCHURER, AND D. E. WULBERT, On the
minimal property of the Fourier projection, Trans. Amer. Math. Soc. 143 (1969),
249-258.

3. E. W. CHENEY AND P. D. MORRIS, On the existence and characterization of minimal
projections, J. Reine Angew. Math. 270 (1974), 61-76.

4. C. DE BOOR AND A. PINKUS, Proof of the conjectures of Bernstein and Erdos concerning
the optimal nodes for polynomial interpolation, J. Approx. Theory 24 (1978), 289-303.

5. N. DUNFORD AND J. SCHWARTZ, "Linear Operators, Part 1," Interscience, New York,
1958.

6. F. W. LUTIMANN AND T. J. RIVLIN, Some numerical experiments in the theory of
polynomial interpolation, IBM J. Res. Develop. 9 (1965), 187-191.


